Tetrahydrobiopterin in striatum: localization in dopamine nerve terminals and role in catecholamine synthesis.
نویسندگان
چکیده
The hydroxylase cofactor, tetrahydrobiopterin, and its biosynthetic system are localized in dopaminergic nerve terminals in the striatum. This conclusion is based on the nearly equivalent loss of tyrosine hydroxylase and tetrahydrobiopterin and its initial biosynthetic enzyme, guanosine triphosphate cyclohydrolase, after injection of 6-hydroxydopamine into the substantia nigra. The role of the hydroxylase cofactor in the regulation of dopamine synthesis is reassessed.
منابع مشابه
Influence of Striatal Astrocyte Dysfunction on Locomotor Activity in Dopamine-Depleted Rats
Introduction: Astrocyte dysfunction is the common pathology resulting in failure of astrocyte-neuron interaction in neurological diseases, including Parkinson’s Disease (PD). To date, only few experimental models of selective ablation of astrocytes are known. The aim of present study was to evaluate the effect of striatal injections of selective glial toxin L-aminoadipic acid (L-AA) on the loco...
متن کاملEFFECTS OF CATECHOLAMINES ON DOPAMINE AND SEROTONIN SYNTHESIS IN RAT BRAIN STRIATAL SYNAPTOSOMES: THE ROLE OF PRESYNAPTIC RECEPTORS AND THE SYNAPTOSOMAL REUPTAKE MECHANISM.
The regulation of dopamine and serotonin synthesis in rat brain striatal synaptosomes has been studied using HPLC methods. Noradrenaline was shown to markedly inhibit both the synthesis of dopamine and serotonin. The response of the synaptosomes to the concentrations of noradrenaline appeared to be biphasic, a very effective inhibition occurring at low concentrations (1-5 µm) and a relativ...
متن کاملLoss of striatal dopaminergic fibers after intraventricular injection of tetrahydrobiopterin in rat brain.
We have reported previously that tetrahydrobiopterin (BH4), an obligatory cofactor for dopamine synthesis, exerts preferential toxicity on dopamine producing cells. We report in the present study that BH4 injection into the lateral ventricle leads to degeneration of the dopaminergic terminals in the striatum, evidenced by a loss of tyrosine hydroxylase (TH) immunopositive fibers, a decreased am...
متن کاملNeurotoxin-induced impairment of biopterin synthesis and function: Initial stage of a Parkinson-like dopamine deficiency syndrome.
Disorders of the function of the tyrosine hydroxylase play an important role in the occurrence of the Parkinson syndrome. The enzyme that catalyses the first, rate-limiting step in the biosynthesis to dopamine requires the cofactor tetrahydrobiopterin. This compound supplies the reduction equivalent for activation of molecular oxygen. Binding of the cofactor to the enzyme is affected by phospho...
متن کاملDopamine turnover and glutathione oxidation: implications for Parkinson disease.
Parkinson disease is characterized by a major loss (approximately 80% or more) of dopaminergic nigrostriatal neurons and by an increased turnover of neurotransmitter by surviving neurons of the nigrostriatal tract. In theory, increased turnover of dopamine should be associated with an oxidative stress derived from increased production of hydrogen peroxide. The peroxide is formed during the oxid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 214 4523 شماره
صفحات -
تاریخ انتشار 1981